Chapter 2

Risks and Threats of Wireless

This chapter discusses the general goals for information security and how they are used to measure risk and understand threats. This information will help in the next sections of this chapter where each of the threats relating to the many types of wireless communications is explored. After looking at each of the threats, this chapter focuses attention on wireless hackers. In this chapter, we see how hackers locate the existence of wireless networks as well as how law enforcement tracks down these hackers.

2.1 Goals of Information Security

When looking at information security, one must address the three tenets of information security: (1) confidentiality, (2) availability, and (3) integrity. These long-standing goals will help us understand what we are trying to protect and why. This information will help when one starts looking at all the risks and threats that face wireless communications. Before one can properly evaluate risk, one needs to set a baseline to understand the definition of each goal one is trying to uphold.
2.1.1 Confidentiality

Attacks on the confidentiality of information relate to the theft or unauthorized viewing of data. This can happen in many ways, such as the interception of data while in transit or simply the theft of equipment on which the data might reside. The goal of compromising confidentiality is to obtain proprietary information, user credentials, trade secrets, financial or healthcare records, or any other type of sensitive information.

Attacks on the confidentiality of wireless transmissions are created by the simple act of analyzing a signal traveling through the air. All wireless signals traveling through the air are susceptible to analysis. This means there is no way to have total confidentiality because one can still see a signal and subsequently record it. The use of encryption can help reduce this risk to an acceptable level. The use of encryption has its own flaws, as seen later in this book. For the most part, the encryption is secure itself, although how it is implemented and how key management is handled may produce flaws that are easily exploited.

2.1.2 Availability

Availability is allowing legitimate users access to confidential information after they have been properly authenticated. When availability is compromised, the access is denied for legitimate users because of malicious activity such as the denial-of-service (DoS) attack.

Receiving RF signals is not always possible, especially if someone does not want you to. Using a signal jammer to jam an RF signal is a huge problem that has been facing national governments for years. Looking for the availability of RF local area networks (LANs), one notices that performing a DoS attack is easy to accomplish. This is due to the low transmit power allocated by the U.S. Government and poor frame management techniques included in most of the current day wireless standards.

2.1.3 Integrity

Integrity involves the unauthorized modification of information. This could mean modifying information while in transit or while being stored electronically or via some type of media. To protect the integrity of information, one must employ a validation technique. This technique can be in the form of a checksum, an integrity check, or a digital signature.

Wireless networks are intended to function in an unimpaired manner, free from deliberate or inadvertent manipulation of the system. If integrity is not upheld, it would be possible for an attacker to substitute fake data.
This could trick the receiving party into thinking that a confidential exchange of data is taking place when in fact it is the exact opposite. Wireless networks have adapted to this type of threat over time. One can see this advancement as new security standards emerge, creating increasingly complex integrity checks.

2.2 Analysis

Analysis is the viewing, recording, or eavesdropping of a signal that is not intended for the party who is performing the analysis. All RF signals are prone to eavesdropping; this is because the signal travels across the air. This means anyone within the signal’s path can hear the signal. One of the only protections available to prevent the loss of confidentiality is encryption. If a signal is using encryption, then its confidentiality can be upheld until that form of encryption is defeated. The risk of analysis on an RF signal is an inherent risk that cannot be avoided. The only option is to mitigate the risk with some type of confidentiality control.

2.3 Spoofing

Spoofing is the act of impersonating an authorized client, device, or user to gain access to a resource that is protected by some form of authentication or authorization. When spoofing occurs in wireless networks, it primarily involves an attacker setting up a fake access point to get a valid client to pass authentication information to that attacker. Another way attackers spoof is by performing a man-in-the-middle attack. In this scenario, an attacker would position himself between a client and the network. This could be accomplished by spoofing a valid access point or by hijacking a session. Once this part is complete, the attacker would then use the authentication information provided by the client and forward it to the network as if it originally came from the attacker.

2.4 Denial-of-Service

Denial-of-service (DoS) is the effect of an attack that renders a network device or entire network unable to communicate. Hackers have found that certain crafted packets will make a network device unresponsive, reboot, or lock up. They have used this technique to shut down high-traffic networks and Web sites. They have also used this attack to reboot network equipment in an attempt to pass traffic through the device as it
is booting up. This is done to try to circumvent any policies set up on the device to protect it or devices behind it. The DoS threat can also adversely affect the availability of a network or network device.

Wireless DoS attacks can be achieved with small signal jammers. Finding signal jammers is not as difficult as one might think. Some modern-day wireless test equipment can perform jamming. This is not the tool's intended purpose, although it is commonly used for this. Jamming is possible because the government regulates the amount of power allowed on a wireless network. In relation to wireless LANs, the amount of power used is a very small amount. This means that it is not difficult to overpower an existing device with a home-made one.

Another DoS threat relating to LANs in particular is the poor structure of management frames. These frames allow for anyone who can analyze the wireless signals to perform a DoS attack by replaying certain management frames. Mostly, theses attacks are layer two frame attacks. These attacks try to spoof management traffic, informing the client that he is no longer allowed to stay connected to the network. Chapter 13 discusses these attacks in more detail.

2.5 Malicious Code

Malicious code can infect and corrupt network devices. Malicious code comes in many forms: viruses, worms, and Trojan horses. People often confuse the three main forms of malicious code. Because of this, they use these terms interchangeably. This section looks at each of these and identifies what classifies them into each of the three groups. Viruses infect devices and do not have the ability to replicate or spread outside the infected system on their own. Once a virus infects a machine, it can only replicate inside the infected machine. This means that all threats from viruses stem from receiving infection. The threat of worms is much higher because they can spread across the enterprise and out to the Internet, infecting multiple devices. In the past few years, humans have started to see global worms that propagate across the entire world. The final malicious code threat discussed here is the Trojan horse. This threat comes from installing or running programs that can have or within their use execute code that might contain malicious content.

Malicious code relating to wireless has to do with new viruses that can affect the many new types of wireless end devices such as PDA units, smart phones, PDA phones, laptops, etc. Wireless viruses have just started to appear in the wild. Even with this threat just starting to develop, many forms of wireless malicious code have already appeared. Some of this code has enough intelligence to find and utilize a variety of available wireless technologies on a device to spread even further.
Another form of malicious content relating to wireless is **spam**. Although spam is not destructive in nature, the time and money it costs an organization often makes it seen as malicious. Spam is not just related to wireless. Long before wireless spam there was e-mail spam. Today’s wireless devices are capable of receiving messages in many formats: e-mail, text messaging, instant messaging, and voice calls. All of these are starting to see spam pop up on them. Dealing with spam has created a security market of its own with products, solutions, and services created to combat this threat.

2.6 Social Engineering

Social engineering is often called low-tech hacking. It involves someone using the weakness of humans and corporate policies to obtain access to resources. Social engineering is best defined as tricking or manipulating a person into thinking the party on the phone is allowed access to information, which they are not. The threat of social engineering has been around for quite some time. Some of the most well-known computer hackers used this type of attack to get information. The real threat to this is the skill level involved. No one needs to be computer savvy or a technical genius to perform this type of attack. There are a number of things to do to prevent this type of attack. First, make sure that a policy is in place regarding sensitive information and phone usage. Make sure that not anyone can call and reset someone’s password. Create a help-desk identification process to authenticate callers to the help-desk operators.

2.7 Rogue Access Points

Rogue access points pose a major threat to any organization. This is because of the high availability and the limited security features of off-the-shelf access points. If a company does not approach the WLAN (wireless local area network) concept fast enough, frustrated employees will take it upon themselves to start the process. When this happens, employees often put in wireless systems of their own. Even with most current-day access points supporting advanced security standards, the default configuration of an out-of-the-box access point is set to the least secure method. This has created a real threat because now a user can easily bring in a rogue access point, plug it in, and put the entire network at risk. The knowledge level required to install an off-the-shelf access point has almost become plug-and-play today. This means that more and more people have the ability to place rogue access points. These same
people lack the ability to secure these devices or even understand the risk they are posing for the company.

Most access points come from employees, although as we will learn later there are cases where an attacker would try to set one up for easy return access. This was not a big issue until recently when the price of 802.11b access points fell well below $100. To do this, an attacker would need physical access and a network port. If a hacker wanted access bad enough, spending $100 for it would be a conceivable expense.

With companies investing in stronger security mechanisms, it would be a shame to have an incident in which an attacker gains access through a non-secure rogue access point. Because of the threats associated with rogue access points many companies have started to put controls in place to increase awareness and prevent the deployment of rogue access points. Many companies that jumped into the newly formed wireless security market have adapted and created tools to detect rogue access points. Some companies have handled rogue access points by creating policies about wireless usage and strict penalties for rogue access placement. Others have taken a second route and invested in wireless intrusion detection systems (WIDS) software.

2.8 Cell Phone Security

Now we will have a discussion of general cell phone identification and security. Cell phones have had a slight advantage over other types of wireless communications in the security realm. This is due to their overwhelming numbers. Most people today have a cell phone; and with so many people using cell phones, many security risks and subsequent controls have been developed to counter each other. Understanding this information will show how cellular phone providers have mitigated similar risks that face wireless local area networks.

Cell phones send radio frequency (RF) transmissions on two distinct channels: (1) one for actual voice communication and (2) the other for control signals. This control signal identifies itself to a cell site by broadcasting its mobile identification number (MIN) and electronic serial number (ESN). When the cell tower receives the MIN and ESN, it determines if the requester is a legitimate user by comparing the two numbers to a cellular provider’s subscription database. Once the cellular provider has acknowledged that the MIN and ESN belong to one of its customers, it sends a control signal to permit the subscriber to place calls.

Like all RF devices, cell phones are vulnerable to eavesdropping and spoofing. In the cellular phone industry, these are called “call monitoring” and “cell phone cloning.” Another risk associated with cell phones is the
ability to reprogram phones, transforming them into advanced microphones capable of recording and transmitting sound from their location to anywhere in the world.

Monitoring calls is an easy task, especially for phones that use analog technology. This is because most analog cell phone technologies were transmitted in the same band as FM radio. A commonly available radio frequency scanner could get one up and listening to calls in minutes. With the proliferation of digital cellular networks, more and more security was erected. This was great because inside a service provider's network, your calls were, for the most part, safe. There were easier analog targets for criminals to exploit. One's digital phone was not so safe if one roamed or went outside of a provider's area of coverage. When two cellular providers wanted to hand off calls to each other for billing purposes, they converted them to analog so they had a common protocol for interoperability. This also meant that security was no longer present. So, even with a digital phone, once the MIN and ESN are removed or identified from the phone call, it could still be tracked, cloned, or monitored inside the digital network.

Another trick involves turning a cellular telephone into a microphone and transmitter. This can be used to record a conversation or bug a room. This can be done without your knowledge by police, governments, and even some highly educated people. How does it work? It is easy to do, just send a maintenance command on the control channel to the phone. This command places the cellular telephone in a diagnostic mode. When this is done, conversations in the immediate area of the telephone can be monitored over the voice channel. The signal engages the phone to perform this monitoring action without any indication of it taking place. The user does not know the telephone is in the diagnostic mode and transmitting all nearby sounds until he or she tries to place a call. The calling feature does not work and the phone is useless until the power is cycled. After that, the phone returns to a normal state as if nothing ever happened.

This is very scary because the user has no idea he is bugged by his own phone through the airwaves. This threat is the reason why cellular telephones are often prohibited where classified or sensitive discussions are taking place. Someone could be bugging your phone as you read. Do not worry; as long as one can place a call without cycling the power, you're ok.

One publicized case of cell phone monitoring involved former Speaker of the House of Representatives, Newt Gingrich. A call between Gingrich and other Republican leaders was monitored and taped. The conversation concerned Republican strategies for responding to an ethics violation for which Gingrich was being investigated. This call was given, or most likely sold, to the New York Times and made public.
Another publicized case of cell phone monitoring involved a pager system instead of a cellular phone system. In 1997, the Breaking News Network monitored the pager messages of a large number of New York City leaders, including police, fire, and court officials. The messages recorded were considered too sensitive to send over the government’s protected police radio. This confidential information was captured and then sold to other news agencies in order to get the scoop on a story. This ended up happening sometimes before the police dispatch even had the information. Later in the year, police arrested the officers of this New Jersey news company for illegally monitoring their pager systems.

Next we look at cellular phone cloning. What is cell phone cloning? It is the copying of the unique identification information programmed into your cell phone by a cellular provider. The cellular provider programs the phone with an electronic serial number (ESN) and mobile identification number (MIN). A cloner will steal this information, copy it to a different phone, and place calls on your bill.

There are many ways for cloners to obtain these numbers. One is when someone fixes your phone or even when you buy a new phone at the store, someone could copy this information during the activation process. The MIN and ESN can also be obtained by an ESN reader (see Figure 2.1), which is similar to a cellular telephone receiver designed to monitor control channels. The ESN reader captures the MIN and ESN as they are being broadcast from a cellular telephone to a cell tower. This happens when your phone is turned on or when you move from one cell phone tower to another.

A major controversy grew around cell phone cloning. At first, the phone companies refused to admit that their security was compromised, thus making the victim pay for all the calls placed by the cloner. This proved to be a big problem for cell phone companies and their customers.

Another threat related to cellular phones deals with the short messaging service (SMS). This is a method of sending short messages similar to e-mail. One of the threats related to this has to do with mass SMS messages that create a denial-of-service attack. This sort of attack has not been widely seen yet, although many industry leaders have openly spoken about the risk and impact if it were to happen.

2.9 Wireless Hacking and Hackers

Inherently, RF has many threats, including interception, signal jamming, and signal spoofing. Because RF travels through the air, picking up the signal is as easy as being within the radio waves’ vicinity with the right hardware. Spectrum analyzers can detect radio transmissions showing the
user the signal frequency. Depending on that frequency, an attacker might be able to identify the transmission right away. Most RF frequencies in the spectrum are reserved for specific uses. Once one is able to find a signal and map it to a reserved spectrum, one knows who is transmitting it and, in some cases, why.

Getting more in tune with the majority of RF threats, one can look at today’s RF local area networks (LANs). These, of course, have the same threats as all RF signals, although they do add a new dimension stemming from mass use and scrutiny. Just like cell phones, the more people who use them, the more time people spend looking at how they work and what they can do to defeat any security that exists. This has been seen over the past few years as a large number of users started deploying wireless networks and security flaws began to pop up. Most wireless network setups are capable of working right out of the box. This has led more and more nontechnical people to deploy them. When setting up a wireless LAN right out of the box, the default configurations are usually the most insecure ones.

2.9.1 Motives of Wireless Hackers

America’s laws and law enforcement agencies have taught us that rarely is a crime committed without a motive. With this said, if someone was
to spend the time to compromise an RF signal, there always is a motive. Some of these motives can be as harmless as wanting an Internet connection to send a loved one an e-mail, or as terrible as committing an act of terrorism against a nation or government. To understand why someone would try to compromise an RF signal, take a look at some of the more well-known motives, such as to get a free Internet connection, commit fraud, steal sensitive information, perform industrial or foreign espionage, and — the worst of all — terrorism. After understanding what motive or motives an attacker might have, one can better understand how much security one should apply to the RF signal. If a company deals with financial information, it probably is more at risk from an attacker than a small doll shop. Knowing who might attack and why can help ensure that the correct risk-reducing actions are taken.

2.9.2 War Drivers

After more and more people realized that out-of-the-box wireless LANs were generally set up, by default, in the most insecure mode, people started to exploit them. This new fad of identifying and categorizing wireless networks based on their security level has been coined “war driving” (see Figure 2.2). War drivers use equipment and software to identify wireless networks. War driving allows attackers to understand the security associated with any particular wireless network they happen to pass. This equipment not only allows war drivers to identify, locate, and categorize wireless networks, but also allows them to upload their results.
to a Web site where their friends and everyone else who has access will be able to see exactly where these unsecured wireless networks are located. This has even become so advanced that the use of GPS has been incorporated to give other people exact locations to these insecure networks. Anyone can simply go online and get a map of the exact location of an insecure network identified by a war driver.

This culture has taken on its own members who are not stereotypical classic teenage computer crackers or hackers. Some older, wealthier people have begun to war drive. One individual turned his Acura in-dash GPS into a war-driving display. Others have mounted fixed wireless antennas onto their vehicles. Figure 2.2 shows a war driver using a Cadillac.

Today, there are major events as well as Web sites dedicated to indexing and storing wireless network location information. They use information provided by war drivers, and some have gone as far as organizing worldwide war drives. The Web site www.worldwidewardrive.org has done just this for four years running. Their first worldwide war drive started on August 31 and ended on September 7, 2002. In this short period of time, 9374 access points were found; and of those, only 30 percent had any encryption technology. As time passed, the worldwide war drive went into round two, lasting from October 26 to November 2, 2002. In this round, they found 24,958 access points, with the number of unsecured access points rising 2.2 percent. With rounds three and four, the number of unsecured access points fell, although they only fell a small percentage. With the fourth worldwide war drive now complete, the total number of wireless networks running without any type of encryption is 61.6 percent. Figure 2.3 has a chart that shows the data collected from all four worldwide war drives. This information was obtained from the worldwide war drive Web site. The latest information available about this year’s or upcoming years’ worldwide war drives is also available on that site.

2.9.3 War Walkers

A more athletic approach involves war walking instead of war driving. In this concept, a war walker would stroll down the street with a laptop either in a bag or out in the open. They would use the same tools and equipment employed by the war driver to identify insecure networks. This has gained a lot of steam, given that the number-one profile for a computer hacker is a teenager who most likely does not have a car or is not old enough to drive. Consumer industries have even gotten on this bandwagon by producing tools to find wireless networks. There are even devices that connect to your keychain that will beep or light up when wireless networks are detected. This has turned the act of war walking into an event that can be performed without any effort during any activity that requires
movement. This means that a war walker can perform this malicious activity while he or she gets milk for mom.

2.9.4 War Chalking

Next is the concept of war chalking (Figure 2.4), in which a war driver or walker does not have the time to go to a Web site and locate an insecure network or does not have any available internet connection to do so. To help a fellow war driver or walker, the community has developed a number of symbols representing wireless networks and their associated security levels. This helps them to find the quickest, most insecure networks so that they can connect to the Internet and anonymously surf the Web or participate in any other activity on the Internet in an anonymous manner.

2.9.5 War Flying

Interestingly enough, lately a new breed of identifying wireless networks has emerged, called war flying. As the name infers, war flying is the act of scanning wireless networks from inside the cockpit of a private plane. When a person is war flying, he can cover a large distance quickly. This has proven the quickest way to collect data about insecure wireless networks thus far. This is because of the use of private planes that can fly at a low altitude and cover a large distance rather quickly. The recommended altitude is less than 2500 feet for optimal wireless scanning.
With war flying, we can see that this new trend of wireless scanning also appeals to people wealthy enough to purchase or rent a private plane.

2.9.6 Bluejacking

Bluejacking is a relatively new term that focuses on Bluetooth-enabled devices. Unlike the name, bluejacking is not stealing or hijacking Bluetooth devices: rather, it is a way to send anonymous messages to Bluetooth-enabled devices. A bluejacker will go to a place where there are a large number of people, such as on a subway, and scan the airwaves for Bluetooth devices. By default, many Bluetooth devices allow for pairing. When a bluejacker finds one of these devices, he sends messages to them and tries to identify them in the crowd. Once identified, messages that are more personal can be sent. This will generally make some nontechnical people a little scared. Could you imagine getting pop-up messages on your cell phone describing where you are and what you are wearing?

2.9.7 X10 Driving

Lately, many X10 cameras are popping up in more than just your browser. With an inexpensive wireless camera out on the market, many people
are using them for all kinds of reasons. This has created what is now known as camera driving. Just as a Peeping Tom would look into your windows, these people buy X10 camera receivers and watch what is broadcasting on X10 cameras in any given area. Because these cameras have no security, any receiver can see what any camera is transmitting.

There are other types of X10 devices available to automate a home. These devices can open the garage door, turn on and off the lights, and control some appliances. Similar to X10 cameras, these devices can be controlled by any receiver. This means not only can someone see what the X10 cameras are broadcasting, but they may also be able to get into one's home or create problems with one's lighting or appliances.

Recently, X10 adopted a weak form of security called home and device codes. This security is applied by two 16-digit wheels that can be set to a house code and a device code. This means that only 256 possible codes exist. Although this might hinder the casual eavesdropper from easily picking up the devices, anyone who wants to take the half an hour to switch the code wheel between all 256 possible codes will be able to defeat the security and control any X10 device in that home.

2.9.8 Cordless Phone Driving

When it comes to phone driving, most of this type of eavesdropping has been reduced by U.S. Government laws and enhanced security. Older 900-MHz phones were primarily analog and could easily be picked up by most scanners. With the advent of 2.4-GHz and 5.8-GHz cordless phones, many higher frequency scanners were more difficult to procure. In an attempt to preserve privacy, the U.S. Government made a large number of these scanners illegal to own or operate. This did not stop resourceful people from tapping into phone conversations, so phone manufacturers employed a security mechanism called Digital Spread Spectrum (DSS), which sends the call information in a digital format across multiple channels.

2.9.9 War Dialing

We have discussed terms such as “war driving,” “war chalking,” and “war walking.” These new hacking terms originated from an old term called “war dialing.” These war dialers would dial multiple numbers looking for a modem connected to a computer system. This was because of the large number of insecure modems connected to many computers and computer networks. Applying this to wireless, there are now war drivers who drive around looking for wireless access points connected to networks. War
dialing and war driving are similar in the sense that the attacker is trying to connect to a predominantly insecure medium in hopes that the sheer number of deployments will result in poor security.

2.9.10 Tracking War Drivers

After confronting a war driver once, I asked him, “Why do you do it?” His statement to me was rather interesting in the fact that it was a contradiction of terms, yet so many of his peers also had the same answer. One response was “to educate the public to the existence of these insecure means of accessing networks and the Internet.” The second response was “amenity or the ability to go online without any record of it being traceable back to them.” Now, thinking about this, if the goal was to have an untraceable Internet connection, then why expose the networks to the public eye? Well, at least the question was answered like a true politician. Credit must be given to a teenage hacker who has professional speaking skills like that.

How would someone track down a war driver? The FBI had several public cases of arresting criminals using wireless networks to compromise retail store networks. They were tracked down so we know it is possible; so let us learn how.

Once the investigation starts, a forensic team arrives on site and dumps the configuration and stored memory of all network devices and servers that were affected. Once this data has been properly removed, in accordance with the chain of evidence, it is properly examined at a lab. This examination process is a timely one, so much so that it can make many incidents considered not financially worth the effort. Many cases are too small to warrant the massive effort needed to investigate.

After the lab results are examined, one can see where the perpetrator first entered the network. Because this was on a switch connected to an access point, one can determine that they came in over the airwaves. Once this information is identified, one can determine the wireless network interface card’s MAC address. This address is hard-coded onto the card by the vendor and is regulated in a sense, which makes it globally unique. Some clever hackers have the ability to change the card’s MAC address, but as time has shown, many do not take the time to do this. Chapter 13 (“Breaking Wireless Security”) discusses how this is done and what tools are out there to perform this type of attack.

After the MAC address has been determined, one of two things can happen. First, the police can get a warrant to search any suspect’s home for the network card in hopes of finding it and its matching MAC address. In a highly important case, such as one that involves terrorism, the FBI
might go back to the card maker and track that card’s movement from creation at the manufacturer’s factory, to the distributor, then to the retail store and finally to the purchaser. This is an easy task to accomplish, although it is very time consuming. It works by correlating many different data sources to limit the number of people to question. Looking at the tracking of the card itself, a vendor can show proof of its arrival at a warehouse or retail store. Once it is proven that it has arrived at a retail store, one only needs to find out who bought it. The first round would be to look up all transactions on the point of sales machines for anyone who purchased any of the vendor’s network cards. Looking at this gives credit card information for anyone who used that method of payment. Most likely, if someone were going to do something illegal, he or she would have paid in cash. Well, it is also easy just to look on the store’s video camera correlating all the times that any of the vendor’s cards were purchased minus any purchases made with a credit card.

After looking at how wireless war drivers can be tracked, one gets to a more important point about wireless devices. All bi-directional communicating wireless devices emit radio waves; so in a sense, all wireless devices can be tracked in one form or another. As one reads through this book, one will see that most modern-day wireless devices have some type of tracking method associated with them. Next time you see some amazing new RF technology, remember the statement above. No matter what manufacturers say about their technologies, any bi-directional communicating wireless device can be tracked.

2.10 RFID

The Radio Frequency Identification (RFID) concept has created some major privacy issues. With RFID, companies can save time and money by being able to track products from their creation, to their purchase at a retail store, and beyond. It is the “beyond” part that has so many people upset about the inherent piracy issues of RFID. Before delving into those concerns, one needs an understanding of the technology. RFID systems have been used for quite some time. Only recently has their true potential been realized. An RFID system is a small tag that is affixed to an object to allow that object to be tracked. Once this tag has been turned on or energized, it will send information about itself when a reader queries it. This tracking can take place wherever there is a reader ready to query the tag. This means other companies can read RFID tags from their suppliers. There also is the ability to add to these tags; if one company buys a product from another and wants to insert some of its own data into the tag, they can. Another RFID innovation that has been discussed
prevents something almost all of us likely have done. How many people have ended up with a pink load of white laundry? Some washing machine manufacturers have talked about using RFID tags embedded inside clothing to prevent the red sock from getting into the load of white laundry. How about never reading tags for washing items again? The same manufacturers have talked about having washing machines set themselves based on the clothing item's RFID tag.

Most RFID systems today have a write-once tag, which means that erasing or modifying RFID information is unlikely. When the price of modifiable RFID tags come down in price, a new integrity threat will emerge, called RFID modification. Today, with RFID, companies can track their products and amass amazing amounts of data. There are so many ways to use RFID. Retail companies use RFID to perform automated inventory. Car manufacturers use them to tag special-order vehicles. Logistics companies use them to track package movement. There are even more usages that are created everyday; for an example of just how massive the push for RFID is, think about this: some companies have started to look at taking data from the RFID to feed financial reports, so investors know at any given time how many units were sold or shipped per quarter. This information could have a direct result on the price of stock. This could then, in turn, affect the way stock trading is performed in the future. Just imagine if a stockbroker could see in real-time the number of units a company is selling. Now that we have a good idea of how RFID works, let us look at the inherent risks and threats involved with its use.

When discussing RFID, the first thing that comes to mind is the concern over privacy. In a world where the products one consumes transfer information to anyone willing to listen, the opportunity to market, trend, and collect data about us becomes a real concern. Some people have talked about many things relating to RFID, from the wild conspiracy theories to real issues that affect everyone on an every-day basis. To understand these concerns, one can look at a couple of examples that range from wild conspiracy theories to those that affect almost everyone every day.

Using RFID, people with access to the right information assets can track individuals based on what they have purchased. If someone buys a can of soda from one store and then walks into another store, the second store's readers might pick up that can. If someone wanted to find a person and had the resources, he or she could find the RFID tag ID number and cross-reference that with a credit card system or company database. This would allow a simple object to become a tracking device. This is highly inconceivable today; although inconceivable or not today, it is technically possible.
Another privacy concern that affects almost everyone is the ability to read and use information from product tags not belonging to the reader’s organization. To put this into context, imagine walking into a store with a bag or purse. When you walk in, card readers at the door energize all the items inside your bag. Then these items send all their information to the reader. The store now has a record of your purchases, not from that store but just in general. Everything inside your bag that has a UPC would have an RFID. These records could include over-the-counter medications, feminine products, and a number of other things that many people consider private. To make things worse, the salesperson might be given this information to get an idea about your purchasing habits.

2.11 Chapter 2 Review Questions

1. Which of the following processes will not lower the risk of social engineering at a help desk?
 a. Positively identifying the caller
 b. Using a callback method
 c. Shredding documents
 d. Having the caller verify the identity of the help desk operator

2. What would a hacker whose motive was money most prefer to attack?
 a. School
 b. Bank
 c. Doll shop
 d. Pizza shop

3. Which of the following terms best describes a Wi-Fi hacker?
 a. War dialer
 b. Hacker
 c. War hacker
 d. War driver

4. What type of malicious code infects devices and does not have the ability to replicate or spread outside the infected system on its own?
 a. Worm
 b. Virus
 c. Trojan horse
 d. Spam
5. List the three main goals of information security.
 a. Integrity
 b. Encryption
 c. Availability
 d. Confidentiality
 e. Scalability
 f. Protecting

6. What two pieces of information are required to hack a cell phone?
 a. MNN and ESS
 b. MIN and ESN
 c. ENS and MSN
 d. Phone ID and vendor ID

7. What piece of information is unique on every wireless card in the world?
 a. IP address
 b. Serial number
 c. MAC address
 d. SSID

8. Which of the following terms are used to describe the process of discovering wireless networks?
 a. War flying
 b. War walking
 c. War driving
 d. All of the above

9. A self-replicating and often self-sending piece of malicious code, which is often e-mailed, is called ____________.
 a. A worm
 b. A virus
 c. A Trojan
 d. Spam

10. What technique would an attacker do to force a wireless end device to disconnect from the network?
 a. Wireless scan
 b. Port scan
 c. OS fingerprinting
 d. RF jamming
11. What would a wireless hacker in his early teens most likely be doing?
 a. War flying
 b. War driving
 c. War walking
 d. War gaming

12. What does the term “spam” mean?
 a. Ham in a can
 b. Sending wanted e-mails
 c. Sending unwanted messages
 d. Sending junk snail mail