Proactive Network Security: Making Your Network Unassailable

Tim Keanini

“The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable.”

—Sun Tzu

The “market” for digital attacks is growing rapidly as the number of networked devices and software vulnerabilities continues to increase. Organizations are already so deluged with attacks that the current strategy of responding to intrusions no longer works because the alarms are turning into a new source of organizational white noise.

Proactive network security offers a new strategy by combining five key elements: (1) detailed assessment of all the devices on the network; (2) continuous monitoring of those devices; (3) maintenance of a database of known vulnerabilities; (4) evaluation and prioritization of threats based on the business value of each of the networked devices; and (5) management of corrective actions through ownership and workflow. Used in combination with reactive technology such as intrusion detection systems, proactive network security offers realistic protection by treating threats and vulnerabilities not as isolated events, but as permanent “features” of the new networked environment.

INTRODUCTION

Security has, of course, become one of the highest priorities of every company. Despite all the hype, the extent of the problem is not always understood. For example, a typical global 2000 enterprise security system generates over two million alerts every day. In 2002, digital attacks resulted in $42 billion worth of damage. And, according to the CERT Coordination Center (CERT/CC) at Carnegie Mellon University, the number of attacks is doubling every year. Even if you do not believe the numbers, the reality is that you or someone you know has been affected by an information security incident within the past 24 hours.

Security is no longer a matter of guarding against occasional attacks. Organizations are under perpetual and continual attack. Digital attacks are now more frequent than spam. And, just as it is no longer possible to deal with spam by opening each message for visual inspection, digital attacks must be dealt with proactively. The constant flood of attacks is a new fact of life for organizations, and requires a new approach to security.

TIM KEANINI is Chief Technology Officer at nCircle (www.ncircle.com), a provider of enterprise-class vulnerability management solutions.
NETWORK SECURITY: A BRIEF HISTORY

There are only two reasons why TCP/IP networks are vulnerable to attack: (1) the network itself and (2) the software applications that run on it.

The Network
TCP/IP’s vulnerability is a consequence of a fundamental design decision: TCP/IP is a “stupid” network, in the words of David Isenberg in a paper he wrote while working at AT&T. A stupid network does not have many services built into it. In contrast, a “smart” network, like the telephone system, puts in lots of features and services: call waiting, caller ID, and the like. This works well for the phone companies because it is a private network that they completely own and can control. For example, they have the power to decide which services are put in; they can charge several dollars a month for caller ID although it does nothing but transmit a handful of information at the beginning of a call.

But the designers of the Internet had different aims. They wanted a public system that would easily integrate existing networks, would be easy to join, and would encourage innovation. So, they built a “stupid” network — also called an end-to-end network by Clark, Reed, and Salzburg in their seminal paper in 1984 — that does little more than move bits from any A to any B. That way, the network can accommodate any project that needs to move bits around without deciding ahead of time which sorts of projects it will favor.

The Internet has worked out better than its designers could have ever imagined, in large part because of its end-to-end architecture. But this success comes at a price — especially when it comes to security.

With the “end-to-end network,” there are solid network architectural and economic reasons for building services at the “ends” of the network rather than into the middle. However, security is not one of the underlying reasons for this structure. As the Internet, is by its very nature, decentralized and open, there is no control over who gets onto the network. The result is that it is so easy to hook devices into the network, that most companies of any size literally do not even know what they have on their networks. And because the end-to-end Internet leaves security to the ends of the network, applying uniform and effective security controls on every single TCP/IP device is pretty much impossible.

Complex Applications
There is another reason why TCP/IP networks are vulnerable to attack: complex applications. Software applications are not getting any simpler. They have more features, they interact with more applications, and they work over increasingly complex networks. Inevitably, this complexity breeds error.

Currently, there are three categories or errors that create network vulnerabilities and exposures:

1. Design error. There is little that a customer can do about design errors in the software his or her company uses.
2. Implementation error. Errors the vendor has made in implementing its software leave the customer with no recourse except to apply the patches as soon as they become available.
3. Configuration error. The customer can continuously work on fixing configuration errors; but in a complex software environment (i.e., every organization’s software environment), perfection is not an option. Continuous improvement is the best one can expect. To sit and do nothing offers your attacker a target-rich environment.

CHANGING THREAT: UNSTRUCTURED VERSUS STRUCTURED

The current realities faced by organizations when dealing with network security are largely the result of the original design goals of TCP/IP that fall short in providing an effective platform for security controls. Also contributing to the challenges of network security is the growing complexity of
applications that makes them inherently insecure. This means that for most organizations, the need to find and fix errors before an opponent can exploit them has become like a game that one has to play every single day. And as with any good game, one must get inside the mind of the opponent to understand one’s own position.

Post 9/11, the awareness and categorization of threats have changed. Most of what the connected world has experienced are unstructured threats, that is, attacks directed not at a specific organization but at a technical or social flaw present in many organizations, often at the infrastructure level.

Your Aunt Alice and Uncle Bob have the same chance of getting hit by an unstructured attack as a large financial institution or government agency. The perpetrator of an unstructured threat presumably “succeeds” if some indefinite percentage of machines is vulnerable.

Over the past few years, the number of structured threats has steadily risen. These sorts of threats are far more dangerous to organizations, for they are targeted specifically and will be repeated until they succeed. The opponent is patient, well funded (sometimes by states), and will enter a network in ways creative enough to entertain a Hollywood audience.

If an organization does not have an effective security program that can handle unstructured threats, it probably does not have a fighting chance to fend off a structured attack.

THE CUSTOMER PROBLEM

Companies face an unprecedented problem securing themselves against intruders and attacks. Every single day, their infrastructure is changing, the threat environment is evolving, and more and more business functions make their way onto the TCP/IP network.

To get a sense of the magnitude of the problem, it is not sufficient to just look at the growing number of known vulnerabilities or the reported incidents. The other important parameter to the dimensions of this problem is the number of IP devices connecting to the network. What is important to one’s opponents is how much of a “target surface” they will have to attack. Using publicly available statistics from CERT/CC and the Internet Software Consortium (ISC), one can estimate how target-rich the Internet is today.

The CERT/CC publishes information on known security incidents, reporting that there were 137,529 incidents in 2003. CERT/CC uses the word “incident” as an administrative term that groups together any related set of activities; for example, an intruder uses the same tool or exploit technique in his or her activity. A single incident can involve anything from a single host computer to a very large number of host computers, at a single site or at hundreds of thousands of sites.

For example, the CERT/CC counts all reports related to the Melissa virus, or all reports related to the Love Letter worm, as a single incident for administrative purposes. Therefore, the number of incidents reported in the CERT/CC statistics may appear to be smaller than what the scope of the problem really is. The ISC estimates there were more than 171 million connected hosts on the Internet in that same year. (Note: This number does not include the private networks sitting behind firewalls on private addressing schemes.)

In 2003 alone, the CERT/CC reports that about 3784 known vulnerabilities. These vulnerabilities are in addition to those from previous years because legacy systems or poor application hygiene could make these counts cumulative over the years. You may have a vulnerability on your network right now that was first published back in 2002.

In determining the number of vulnerabilities, a conservative approach is to assume an average of ten vulnerabilities per connected host. As one can see, having the potential target number up in the billions is not a good thing. There are a number of questions to consider in estimating such numbers. Is the attack surface available to attackers really that large? Do the attackers...
have even more untapped targets to compromise?

One could sit and argue the numbers, but not knowing the target surface of networks with one’s own organization is not acceptable. Not only should one know what the target surface looks like today, but last week and last month as well. Are resources operationally fit and battle ready?

In the spirit of Sun Tzu, have you made your position unassailable?

One thing is certain: there are more targets for the bad guys, more bad guys, and more creative attack methods. Enterprises must assume that their IP networks will continue to be assailed. In fact, the numbers published above by the CERT/CC are conservative because they only take into account known vulnerabilities and reported incidents; a PricewaterhouseCoopers study showed that 41 percent of senior technology executives at companies with a serious security breach did not report them to the authorities.

With so many risks, organizations cannot wait for attacks to damage them and then respond. Organizations need to proactively guard against the attacks that are a new part of the network infrastructure, not merely react to them.

Be careful what you count: why not just track the number of attacks or security incidents per year? Historically, this was the case but it is dangerous because, for one, not all incidents are reported; and two, any smart biological agent knows that it is far more important to compromise its host but keep it alive. It is much more valuable for opponents to take control of a computer and use it for secondary activities (stealing credentials, exploiting the trust this machine might have with other machines, etc.) than to affect the machine in a way that is easily detected or kill the resource they just compromised.

For that matter, basing one’s strategy on the attack and security incident statistical data is like driving a car while looking only at the rear-view mirror when someone is trying to run you off the road.

PROACTIVE AND REACTIVE SYSTEMS

Reactive systems, such as intrusion detection or intrusion prevention systems, depend on an attack, incident, or loss of some degree to occur before they start the information gathering and analysis that ultimately drives some form of automation or reporting. They complement proactive security measures in the same way that firefighting complements fire prevention.

A proactive system constantly tests the organization’s network for vulnerabilities and exposures. It then assesses and prioritizes those vulnerabilities and exposures, and manages the process by which those vulnerabilities and exposures are addressed. All IP devices attached to the network are periodically or continuously scanned and profiled for changes, violations of policy, and vulnerabilities and exposures. Analytics are applied so that the administrators and business owners are presented with actionable intelligence relative to the risk to their business. The defect is then corrected before security can be breached.

In contrast to reactive systems, proactive systems have the advantage of providing valuable intelligence about an organization’s network and networked devices even when they are not under attack. Of course, proactive systems work best when complemented with appropriate reactive systems. This provides organizations with a layered approach to network security where vulnerabilities are detected and dealt with on multiple levels.

So, why are reactive measures more common than proactive ones? First, there is an illusion of immediacy to reactive measures: a company only reacts if it recognizes that it has been attacked. This makes reactive measures seem more urgent, and often more easily justified. On the other hand, a company may never know exactly what attacks its proactive measures prevented, so the immediacy of the value of those measures is not as obvious.

Reactive measures and technologies are better understood because they have been around longer and are widely deployed. The
initial costs involved with a reactive security program are much lower than those associated with creating a proactive system. However, while making the move to a proactive system requires a substantial investment in building and maintaining a database of vulnerabilities and remedies, this preventative stance will save organizations money in the long run. The benefits easily outweigh the additional work and investment — damage is prevented before it happens and more of the network is understood and protected. An ounce of prevention is worth a pound of cure.

PROACTIVE SECURITY IN DETAIL
Proactive Measures and Reactive Measures
There is no realistic possibility of eliminating all threats. The very nature of the basic architecture of TCP/IP and the inevitable complexity of applications makes this impossible. True success consists of proactively reducing risks to the network. Each organization has its own level of risk tolerance, as embodied in its policies and practices. In looking at reactive network security, the focus is on detective measures and recovery measures.

These detective measures try to identify incident or loss resulting in some level of recovery. No system is 100 percent accurate, so detective and recovery measures complement the proactive measures much like how fire safety has both fire-fighting and fire prevention.

To take a proactive stance to network security, organizations must make the shift from using only detective and recovery measures and include the following:

- Directive measures state the goals of “how things should be or how things should be done.” Directive measures are usually known as security policy.
- Preventative measures go out and evaluate “what is” and compare it to “what should be.”
- Corrective measures are the result of preventative measures and focus on bringing these defects or outliers back into the norms of operations.

Implementing such proactively focused measures is not about deploying a point-solution or point-product. It is a life-cycle product involving technology, processes, and people as well as the types of proactive measures discussed above.

A sound security policy begins with an assessment of the standards and processes by which it is going to measure compliance. This is influenced by three sources, two external to the organization and one internal, which are as follows:

1. The External Vulnerability Catalog lists the known external threats. Catalogs such as the Common Vulnerability and Exposures (CVE), Bugtraq (Symantec), Vigilinux (TruSecure), and iDefense list all the known vulnerabilities of every piece of software.
2. External Regulatory Criteria within regulated industries establish a framework for auditors so that security can be measured in a uniform manner. Examples include HIPAA, GLBA, and FIPS-199.
3. Enterprises usually have various working groups and committees that create policies designed to make the network and software environment secure. These are closely aligned with the business’ tolerance for risk and change as the business changes.

It is important to keep in mind that enterprise security policies are not carved in stone, and will evolve and change over time. Sometimes a vulnerability will be deemed acceptable, or a new vulnerability will emerge that requires “patching” the policies (e.g., “Henceforth, handheld computers cannot be left unattended in the restrooms.”). The critical element here is that business owners have ownership over their computing environment and accept the responsibility and accountability of the vulnerabilities and
exposures their infrastructure brings to the business.

Preventative Measures: Analyzed in the Context of Business
Once policies state what is acceptable and what is not acceptable, an organization assesses its existing network infrastructure, comparing “what should be” to “what is.” This assessment must encompass not only the search for known vulnerabilities, but also the violations to system and network baselines (sometimes referred to as “gold standards”). This can be done intermittently, with the risk of being vulnerable to attack in between assessments; or it can be done continuously. When vulnerabilities are found, they are presented to the enterprise, preferably in prioritized, easily understood reports, so that the information is fully actionable.

Corrective Measures: Correcting Flaws, Returning to Operational Goals
If an organization finds something on its network that is either in violation of policy or a vulnerability, there are only three actions that can take place: remediate, mitigate, or accept the law. It is important at this point that someone take ownership over the law itself. If the business owner chooses to accept the law, the internal security policy must be modified to represent this exception and the workflow continues.

ACCOUNTABILITY AND TRANSPARENCY
Accountability and transparent progress tracking are the most important properties regarding the corrective measures. The Federal Information Security Management Act (FISMA) is an example of this process becoming less of an option and much more mandatory. The Office of Management and Budget (OMB) requires that all federal agencies report on a quarterly basis how many new vulnerabilities were found, how many were fixed as planned, and how many are delayed.

To those familiar with Quality Management methodologies such as Six Sigma, this workflow will look familiar. If one takes violations of policy and vulnerabilities as defects, then the reduction in defects per million on an ongoing basis will improve the effectiveness of the security program and ultimately the business. The results are measurable on a daily basis, unlike the reactive measures that can only make claims such as “162 days without a security breach.”

This is important because measuring security by the number of incidences, attacks, and loss misjudges the importance and effect of security systems. It is more realistic and helpful to measure security spending based on the acceptable risk to the business. Proactive security provides not only continuous, preventive security, but also gives the business a more detailed, complete, and realistic way of assessing the effect of security on its operations and financial picture.

SUMMARY
When comparing IT security practices with mature systems such as fire safety that dates back to 300 BC, one can see how immature the industry really is. It is a safe bet that the industry will continue to evolve as change is happening at the threat level, at the technical level, and at the business level. The most significant shift in an organization’s strategy will be moving from the reactive side of the incident line to the proactive side. This is true for any other system that has an active opponent. Many organizations have already made the shift and experience positive results on a daily basis. It is time to make one’s position unassailable.